Ingkaran atau negasi biasanya digunakan untuk menyangkal atau kebalikan dari suatu
pernyataan. Untuk menyangkal atau membuat negasi dari suatu pernyataan biasanya
dengan cara membubuhkan kata “tidak benar” di depan kalimat atau dengan
menyisipkan kata “tidak atau bukan” di dalam pernyataan tersebut. Pernyataan baru
yang didapat dengan cara seperti itu disebut negasi atau ingkaran dari suatu
pernyataan semula.
Jika p adalah suatu pernyataan, maka ingkaran atau negasi dari pernyataan tersebut
dituliskan dengan menggunakan lambang berikut ini
dan dibaca “tidak benar p”atau “bukan p”
Contoh 7
Tentukan ingkaran atau negasi dari pernyataan-pernyataan berikut!
a. p : Jakarta ibukota Indonesia
~p : Tidak benar Jakarta ibukota Indonesia
~p : Jakarta bukan ibukota Indonesia
b. q : 6 < 3
~q : Tidak benar 6 < 3
~q : 6 3
c. r : cos2x + sin2x = 1
~r : Tidak benar cos2x + sin2x = 1
~r : cos2x + sin2x 1
d. s : 2 – 3 x 4 < 10
~s : Tidak benar 2 – 3 x 4 < 10
~s : 2 – 3 x 4 > 10
Bila kita perhatikan pada contoh di atas, tampak bahwa jika suatu pernyataan bernilai
benar (contoh 7a dan 7c) maka akan mempunyai ingkaran bernilai salah. Sebaliknya
jika suatu pernyataan benilai salah (contoh 7b) maka akan mempunyai ingkaran
bernilai benar. Sehingga nilai kebenaran dari suatu ingkaran selalu berlawanan dengan
nilai kebenaran pernyataan semula. Label: Logika Matematika, matematika
Responses
0 Respones to "Ingkaran atau Negasi"
Posting Komentar